PVCNNの最近のブログ記事

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #4

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #4 です。

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #3 で、S3DIS の学習ができたので、
今回は、予測(Predict) を試してみました。

開発環境
OS: Windows10
言語: Python 3.7.9
Pytorch 1.7.1 gpu
開発ツール: Eclipse
その他ツール:
VisualStudio 2017 community
MYSY2: ./data/shapenet/download.sh でのみ使用。
PCメモリー: 16G ( 9.5G 位使うみたい。)
注) オリジナルの、datasets/s3dis.py だと、チョットずつファイルから持ってくるので、メモリー消費は、少ないと思います。
GPU: GTX 1070 8G

前回同様、今回も、S3DISのデータアクセスは、オリジナルの datasets/s3dis.py では無くて、カスタマイズ版 (datasets/s3dis_nishi.py)を使います。
詳しくは、前回の Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #3 をご覧ください。

評価用のオリジナルプログラムは、evaluate/s3dis/eval.py ですが、やはりこちらも、
データセットが用意出来ないので、コピーして、少し改造してやります。

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #3

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #3 です。

mit-han-lab/pvcnn

前回までで、shapenet データでの確認ができたので、今回は、KITTI と行きたいところですが、
KITTI のラベルデータの入手が、面倒なので、先に、S3DIS を試してみました。

開発環境
OS: Windows10
言語: Python 3.7.9
Pytorch 1.7.1 gpu
開発ツール: Eclipse
その他ツール:
VisualStudio 2017 community
MYSY2: ./data/shapenet/download.sh でのみ使用。
PCメモリー: 16G ( 9.5G 位使うみたい。)
注) オリジナルの、datasets/s3dis.py だと、チョットずつファイルから持ってくるので、メモリー消費は、少ないと思います。
GPU: GTX 1070 8G

S3DISの方も、オリジナルの datasets/s3dis.py のままでは、オリジナルデータのText ZIP
(http://buildingparser.stanford.edu/dataset.html) が必要なので使えません。

なので、今回は、'https://shapenet.cs.stanford.edu/media/indoor3d_sem_seg_hdf5_data.zip' を
ダウンロード And Unzip した、h5 ファイル版を使います。

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #2

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning #2 です。

mit-han-lab/pvcnn

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning で学習ができたので、結果確認をしてみます。

開発環境
OS: Windows10
言語: Python 3.7.9
Pytorch 1.7.1 gpu
開発ツール: Eclipse
その他ツール:
VisualStudio 2017 community
MYSY2: ./data/shapenet/download.sh でのみ使用。

1. 評価
オリジナルでは、下記、スクリプトを実行します。
> python train.py configs/shapenet/pvcnn/c1.py --devices 0 --evaluate

但し、これでは、面白くありません。
第一、通常のアプリケーションで使えるような代物ではありません。
たとえは、1件の画像 (Point Cloudデータ) を入力して、その結果を利用する。
には、使えません。
なので、今回少し改造をしてみました。

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning

Pytorch PVCNN:Point-Voxel CNN for Efficient 3D Deep Learning を試してみました。

mit-han-lab/pvcnn

開発環境
OS: Windows10
言語: Python 3.7.9
Pytorch 1.7.1 gpu
開発ツール: Eclipse
その他ツール:
VisualStudio 2017 community
MYSY2: ./data/shapenet/download.sh でのみ使用。

1. Data
Data は、ShapeNet にしました。

2. Pytorch 実行環境
Anaconda で、 Pytorch 1.7.1用のチャネルだけ作成して、後は、全て
pip install で、必要パッケージを追加します。
毎回、環境を設定するのが、結構大変なので、batch ファイルを用意して、DOS プロンプトで起動します。

このアーカイブについて

このページには、過去に書かれたブログ記事のうちPVCNNカテゴリに属しているものが含まれています。

前のカテゴリはObject Detectionです。

次のカテゴリはU-Netです。

最近のコンテンツはインデックスページで見られます。過去に書かれたものはアーカイブのページで見られます。

カテゴリ

ウェブページ

サイトナビ