2024年9月アーカイブ

ROS2 自作 Turtlebot3 による 草刈りロボット開発。#8 Transformer で経路計画をする。

--- ROS2 ロボット自律走行の経路計画の補助に、機械学習(Transformer、LSTM)を使う。 ----

ROS2 自作 Turtlebot3 による 草刈りロボット開発。#6 Nav2 Planner を替えてみる で、ThetaStarPlanner を使って、Auto Mower 時の走行の直進性の改善がみられた。

しかし、まだおんちゃんが望む直進性能には、足りない。
そこで、ThetaStarPlanner の経路プランの一部補正として、機械学習が使えないか、無い知恵を絞って、考えてみた。

1. 概要
結論を先に言ってしまえば、経路プランに、Transformer、Lstm による、Speech To Text モデルのロジックを使えないだろうか? と言う話じゃ。

下の画像だと、赤線の経路を、青線の様にしたい。
障害物の手前まで真っ直ぐ進んで、障害物をなぞるように進んで、再度、スタートとストップの直線上に戻る、走行が欲しい。


2024-09-30 14-25-56-1.jpg

ROS2 自作 Turtlebot3 による 草刈りロボット開発。#7 障害物からの脱出に機械学習を使う。

---- Auto Mower で、障害物に囲まれた際の脱出方向の算出に、機械学習の画像分類 (Image Classify) を使ってみる。-----

Auto Mower で、ロボットを動かして、目的地に到達させた場合に、障害物に近づき過ぎる場合がある。
そうすると、navigation2 で、その場所から抜け出せずに、エラー終了してしまう。

これを、防ぐ為に、static map 上で、障害物に囲まれた際に、脱出方向を計算して、cmd_vel モードで、ロボットを少し遠ざけている。

2024-09-30 17-04-16-1.jpg
現状は、ProControl::obstacle_escape() で処理を行っています。
処理概要は、
Static Map から、ロボットの周りを、OpenCV の cv::Mat に取りこんで、8方向のMaskを用意して、Mask と AND を取って、障害物の Dot を取得した後、
それぞれの方向で、一番障害物が少ない(Dot が少ない)方向に、cmd_vel を使って動かす。
注) 今は、Local Cost Map(static_layer + obstacle_layer) を、resolution: 0.01 の解像度で使っています。

これって、画像(2値画像か、グレースケール画像)を取りこんで、その画像パーターン(黒い部分が障害物、白が空きスペース)から、8クラス(クラス=方向) に分類する、
Image Classify ではないじゃろか?

Image Classify だったら、Orange Pi 5 の NPUでも使えそうじゃ!!。
少し、試してみないといかん。

ROS2 自作 Turtlebot3 による 草刈りロボット開発。#6 Nav2 Planner を替えてみる。

---- Ros2 Navigation2 Planner を、NavfnPlanner から、ThetaStarPlanner に替えてみた。 ----

nav2.org / tuning を見ていたら、

Planner Plugin Selection
NavFn will typically make broad, sweeping curves; Theta* prefers straight lines and supports them at any angle;
and Smac 2D is essentially a classical A* algorithm with cost-aware penalties.

と記述があったので、
Theta を使えば、少しは、ロボットを直線的に走らせられるのではないか?
と思ったので、早速試してみた。

具体的には、xxx.yaml の中の、
planner_server:
で指定するので、ここを変更すれば良い。

ROS2 自作 Turtlebot3 による 草刈りロボット開発。#5 C++ cmd_vel 走行で障害物をよける方法。

今回は、ROS2 自作 Turtlebot3 や、Gazebo Turtlebot3 で、C++ cmd_vel でコントロールしているときに、障害物を検知する機能を組み込んでみました。

方法としては、Stero Camera、Lidar、Depth Camera を入力として、Local Costmap に 障害物が、Topic として出てくるので、
それを、定期的(1 [sec]) に取りこんで、ロボットの前方に障害物が投影されたら、ロボットの方で、なんらかの対応処理をする。

Navigation2 を使えば、かんたんですが、 rpp 等を使うと、まずロボットがまっすぐ走行しません。

草刈りロボットとしては、障害物が無い間は、常に直線上を走行させたいので、cmd_vel で走行させています。
この時に、障害物が現れたら、Nav2 走行に切り替わって、障害物を避ける動きを組み込んでみました。

cmd_vel 走行のみの場合は、そこで、障害物がなくなるのを待つか、走行処理を終了させる か、どちらかになります。

このアーカイブについて

このページには、2024年9月に書かれたブログ記事が新しい順に公開されています。

前のアーカイブは2024年8月です。

次のアーカイブは2024年11月です。

最近のコンテンツはインデックスページで見られます。過去に書かれたものはアーカイブのページで見られます。

カテゴリ

ウェブページ

サイトナビ